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I. Compound Information
 

Common name Melatonin
 

Structure 

PubChem ID 896 MF C13 H16 N2 O2 MW 232.28

CASRN 73-31-4 Polar surface area 50.36 logP 0.48 

IUPAC name N-[2-(5-methoxy-1H-indol-3-yl)ethyl]acetamide 

Other names N-Acetyl-5-methoxytryptamine; 5-Methoxy-N-acetyltryptamine 

Drug class Antioxidant 
Notes 

Development status Marketed in the U.S. as an over-the-counter drug and dietary supplement.
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II. Rationale
 

IIa. Scientific Rationale / Mechanism 
Oxidative stress and generation of free radicals from both mitochondrial impairment and dopamine 

metabolism are considered to play critical roles in Parkinson’s Disease (PD) etiology. Thus, the use of 
antioxidants as an important co-treatment with traditional therapies for PD has been suggested. Melatonin
(N-acetyl-5-methoxy-tryptamine), an endogenous pineal hormone associated with the maintenance of 
diurnal rhythms, has been shown to have potent endogenous antioxidant actions. Because 
neurodegenerative disorders are mainly caused by oxidative damage, melatonin has been tested 
successfully in both in vivo and in vitro models of PD (Mayo, 2005).

Melatonin has been shown to be one of the best physiological antioxidants and in vivo cell protectors . 
Melatonin is distinguished by its solubility in both lipids and water and by its ability to pass the blood/brain
barrier allowing access to both glial and neuronal cells (Antolin, 2002).

Melatonin prevents 6-hydroxydopamine induced apoptosis in naïve and neuronal PC12 cells (Mayo,
1998).

Low (100nM) and high (1mM) dose melatonin protects cultured rat astrocytes from oxidative stress 
(Martin, 2002).

Primary rat neurons were grown in low density in serum-free media. Under these conditions, nearly all 
cells died, presumably due to the lack of essential growth factors. Treatment with 250 μM melatonin 
rescued nearly all dying cells (100% tau+ neurons), including tyrosine hydroxylase immunopositive DA 
neurons, for at least 7 days following growth factor deprivation. This effect was dose and time dependent 
and was mimicked by other antioxidants such as 2-iodomelatonin and vitamin E. Similarly, in the second 
model of oxidative stress, 250 μM melatonn produced a near total recovery from the usual 50% loss of 
dopamine (DA) neurons caused by neurotoxic injury from 2.5 μM 1-methyl-4-phenylpyridine (MPP+) 
(Iacovitti, 1997).

A reduction by melatonin in nigrostriatal dopaminergic activity could theoretically lead to worsening of 
parkinsonian symptoms, as is indeed suggested by findings in animal models of PD (Willis, 1999).
Therefore, melatonin may be beneficial for neuroprotection against further loss of striatal neurons but may
potentially exacerbate motor dysfunction in patients who have already developed the disease (Zisapel,
2001). 
IIb. Consistency 

Melatonin (10mg/kg) did not protect against MPTP-induced neurotoxicity in Swiss Webster mice 
although it did protect against methamphetamine administration (Itzhak, 1998), 
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III. Efficacy (animal models of Parkinson’s disease)
 

IIIa. Animal Models: Rodent 

C57/Bl6 mice were treated with MPTP (15 mg/kg) and 24 h later DA turnover, tyrosine hydroxylase 
activity, lipid peroxidation and mitochondrial complex I activity were determined in nigrostriatal tissue. 
Locomotor activity was also measured before and after MPTP treatment. To study the neuroprotective 
effects of melatonin and deprenyl, the drugs were administered alone or in combination 30 min before the 
neurotoxin, followed by the same determinations 24 h later. Melatonin (10 mg/kg), but not deprenyl (0.37 
mg/kg) prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons
induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity 
depressed by the neurotoxin, normalizing locomotor activity of mice. Although melatonin was unable to 
counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, it does potentiate the
effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a 
dissociation of complex I inhibition from DA depletion in this model of Parkinson’s disease. The data also 
support that a combination of melatonin, which improves mitochondrial electron transport chain and 
reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e.
DA turnover, may be a promising strategy for the treatment of PD (Khaldy, 2003).

Co-administration of melatonin (5.0 mg/kg, i.p., twice in a 12-h interval) with L-DOPA, in control as well
as in light-exposed rats, significantly increased dialysate L-DOPA concentrations, greatly inhibited L-DOPA
semiquinone formation, and restored up to the control values dialysate DA and ascorbic acid 
concentrations. These findings demonstrate that endogenous melatonin protects exogenous L-DOPA from
autoxidation in the extracellular compartment of the striatum of freely moving rats; moreover, systemic co-
administration of melatonin with L-DOPA markedly increases striatal L-DOPA bioavailability in control as 
well as in melatonin-depleted rats. These results may be of relevance to the long-term L-DOPA therapy of
Parkinson's disease (Rocchitta, 2006).

Rotenone subcutaneously infused for 14 days induced PD symptoms in rats  indicated by reduced 
spontaneous locomotor activity, loss of tyrosine hydroxylase immunoreactivity in the substantis nigra and 
striatum, obvious α-synuclein accumulation, downregulated DAT protein expression and upregulated D2R
expression. Co-administration of melatonin prevented nigrostriatal neurodegeneration and α-synuclein 
aggregation without affecting the rotenone-induced weight loss and hypokinesis (Lin, 2008).

Chronic melatonin administration following unilateral intranigral infusion of rotenone in rats reduced the 
rotenone-induced increase in hydroxyl radicals and prevented the reduction in activity of antioxidant 
enzymes glutathione, superoxide dismutase, and catalase (Saravanan, 2007).

MPTP-treated mice do not show any loss of or damage to nigral cells when simultaneously given 
melatonin (500 μg/kg bw) (Antolin, 2002).

At 2 weeks after partial 6-hydroxydopamine lesioning in the striatum rats chronically treated with 
melatonin via drinking water exhibited significantly attenuated rotational behavior. After 10 weeks animals 
treated with 4.0 μg/ml melatonin exhibited normal tyrosine hydroxylase (TH) immunoreactivity in the 
lesioned striatum. These findings support a physiological role for melatonin in protecting against 
parkinsonian neurodegeneration in the nigrostriatal system (Sharma, 2006). 

IIIb. Animal Models: Non-human primates 

ML-23, a melatonin receptor antagonist, or possible partial agonist, was administered orally in a dose of
3 mg/kg twice daily for 56 days in the MPTP PD model in the common marmoset. ML-23 produced a 
significant remission (which persisted after the withdrawal of the drug) from MPTP-induced Parkinsonism.
(Willis, 2005) 
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IV. Efficacy (Clinical and Epidemiological Evidence)
 

IVa. Clinical studies
 

Melatonin did not ameliorate parkinson’s disease symptoms in human patients (Shaw, 1973; 
Papavasiliou, 1972). In the Shaw, et al. study melatonin, in doses up to 1 gram/day, was 
administered to four parkinsonian patients for four weeks.

The effect of melatonin on sleep and motor dysfuntion in PD were studied in a group of 18 
patients from a PD clinic. Although melatonin significantly improved subjective quality of sleep 
evaluated by the Pittsburgh Sleep Quality Index (PSQI), polysomnography (PSG) abnormalities 
were not changed. Motor dysfunction was not improved by the use of melatonin (Medeiros, 2007). 

IVb. Epidemiological evidence 

With regards to  epidemiological evidence which may arise from the use of melatonin it should
be noted that there is potential for widespread human subject exposure to synthetic melatonin 
available as a drug. It is inexpensive and readily available over the counter in drug stores, health 
food stores, and supermarkets as a health and nutrition supplement. Several subpopulations have
been identified as likely to be exposed to melatonin used to adjust circadian rhythms (Dawson, 
1995). Ubeda, et al. reported that pharmacological levels of melatonin occur in a concentration 
range of 10-9 to 10-8 m/L. There is, of course, the possibility that a percentage of melatonin 
consumers will engage in excessive self-administration (Ubeda, 1995). 
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V. Relevance to other neurodegenerative diseases
 

Melatonin is neuroprotective in experimental models of stroke in rats (reviewed in MacLeod, 2005).
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VI. Pharmacokinetics
 

VIa. General ADME
 

In healthy adults, normal plasma levels of melatonin average less than 10 pg/mL during the daylight 
hours. Around 10 p.m., levels begin to rise, reaching an average of 90 pg/mL between 2 and 4 a.m. There 
is substantial intersubject variability in both daytime and night time plasma melatonin levels. Normal 
endogenous production of melatonin is estimated to be 28-30 µg/day.

Also in healthy adults, melatonin is rapidly absorbed after oral administration, with peak plasma levels 
occurring in 0.5 to 2 hours. The bioavailability of immediate-release oral doses ranges from 3% to 76% and
is not significantly affected by food. Hepatic first-pass metabolism of an oral dose is substantial (as much 
as 60%). The volume of distribution is approximately 35 L, and elimination half-life is 30-50 minutes. 
Exogenously administered melatonin is metabolized by CYP1A2 to the inactive metabolites 6-
hydroxymelatonin (approximately 85%) and N-acetylserotonin (approximately 15%), which are 
subsequently excreted in the urine. Oral transmucosal (sublingual) dosage forms, taken before bedtime, 
appear to more closely mimic endogenous nocturnal output of melatonin (Pepping, 1999). 

VIb. CNS Penetration 
“The blood-brain barrier is no impediment to the passage of melatonin into the brain.” (Reiter, 1991) 

VIc. Calculated logBB (Clark Model)
 -0.53
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VII. Safety, Tolerability, and Drug Interaction Potential
 

VIIa. Safety and Tolerability 

Sedation, drowsiness, and mild hypothermia (0.5-1.5 °F) are the most common adverse effects of 
melatonin in therapeutic dosages. Other reported adverse effects include altered sleep patterns, increased
seizure activity in neurologically impaired pediatric patients, fatigue, headache, confusion, pruritus, 
dysphoria, and one case of possible autoimmune hepatitis (Pepping, 1999). 

VIIb. Drug Interaction Potential 

Clearance of melatonin is delayed in patients concurrently taking chlorpromazine. In mice, long-term 
benzodiazepine administration lowers nocturnal secretion of melatonin; in addition, melatonin is thought to
enhance the anxiolytic action of benzodiazepines by increasing binding of benzodiazepines to CNS 
receptor sites. Recent murine studies have shown that tolerance of and dependence on morphine were 
reversed by intraperitoneally administered melatonin (Pepping, 1999).

Melatonin is contraindicated in multiple sclerosis and other autoimmune diseases because of its 
potential to exacerbate these conditions. Caution should be used in patients with depression (dysphoric 
reactions have been reported), seizures, and other neurologic disorders (melatonin is a proconvulsant in 
neurologically disabled pediatric patients). Melatonin may have increased pharmacologic effects in patients
with hepatic insufficiency because of reduced clearance (Pepping, 1999).

Melatonin increases the activity of antioxidant enzymes and their gene expression (reviewed in 
Rodriguez, 2004). 
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